|                                                                                                                   | 編號: 056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 93學年度國立成功大學 化學系<br>研究所招生考試                                                                                        | 在職專班 綜合化學(專 試題 共 4 頁 班)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 單一選擇題:(第1、2二題各2分;3-34                                                                                             | 毎題3分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ol> <li>Arrangement of following according to ex<br/>Waal's equation?</li> </ol>                                 | spected value for b (volume correction value) in van der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (A). He $<$ HF $<$ H <sub>2</sub> O $<$ CO <sub>2</sub> $<$ SF <sub>6</sub>                                       | (B). He $<$ H <sub>2</sub> O $<$ HF $<$ CO <sub>2</sub> $<$ SF <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (C). He $<$ HF $<$ CO <sub>2</sub> $<$ H <sub>2</sub> O $<$ SF <sub>6</sub>                                       | (D). He $<$ HF $<$ H <sub>2</sub> O $<$ SF <sub>6</sub> $<$ CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (E). $SF_6 < H_2O < CO_2 < HF < He$                                                                               | 2 0 0 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Put the following gases in order form sma                                                                         | illest to the largest according to van der Waal's constant a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (pressure correction value)?                                                                                      | and the support and the suppor |
| (A). $H_2 < N_2 < CH_4 < H_2O$                                                                                    | (B). Ne $<$ N <sub>2</sub> $<$ H <sub>2</sub> $<$ CH <sub>4</sub> $<$ H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (C). Ne $<$ H <sub>2</sub> $<$ N <sub>2</sub> $<$ CH <sub>4</sub> $<$ H <sub>2</sub> O                            | (D). Ne $<$ H <sub>2</sub> $<$ N <sub>2</sub> $<$ H <sub>2</sub> O $<$ CH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (E). $CH_4 < H_2O < N_2 < H_2 < Ne$                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The rate of effusion of freon-12 to freon-1                                                                       | 1 is 1.07:1. The molar mass of freon-11 is 137.4 g/mol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| what is the molar mass, in g/mol of freon-                                                                        | -12?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (A). 147.0 (B). 142<br>(D). 128.4 (E). 120                                                                        | (-).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (D). 128.4 (E). 120.                                                                                              | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| For the hypothetical reactions 1 and 2.                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. $A_2(g) + B_2(g) \leftrightarrow 2 AB(g)$                                                                      | $K_1 = 10^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2. $2 A_2(g) + C_2(g) \leftrightarrow 2 A_2C$ (                                                                   | (g) $K_2 = 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3. $A_2C(g) + B_2(g) \leftrightarrow 2 AB(g)$                                                                     | $(g) + \frac{1}{2} C_2(g)$ What is the value for K for reaction 3?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                   | C). 10 <sup>2</sup> (D). 10 <sup>4</sup> (E). 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| . Which of the following statements is true?                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (A) A system at a state of chemical equilib                                                                       | rium is microscopically static and macroscopically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dynamic. (B) Catalysts are no effective means of abo                                                              | anging the most in a few and it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul><li>(B) Catalysts are no effective means of cha</li><li>(C) The concentration of the products equal</li></ul> | als that of reactants and is constant at equilibrium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (D) When heat is added to an exothermic r                                                                         | eaction, the reaction shifts toward products.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (E) The equilibrium constant is independent                                                                       | nt of temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| In pure liquid ammonia, the equilibrium of                                                                        | oncentrations of both $[NH_4^+]$ and $[NH_2^-]$ are $3 \times 10^{-14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

M at 25°C. Which of the following equations holds for liquid ammonia solutions at 25°C?

(A)  $pNH_4^+ + pNH_2^- = 13.5$  (B)  $pNH_4^+ = pNH_2^- = 13.5$ 

(C)  $pNH_4^+ = 27.0$ 

(D)  $pNH_4^+ = 27.0 - pNH_2^-$  (E)  $pNH_4^+ = log [pNH_4^+]$ 

7. For nitrous acid, HNO<sub>2</sub>,  $K_a = 4.0 \times 10^{-4}$ . Calculate the pH of 0.25 M HNO<sub>2</sub>.

(A) 1.56

(B) 2.00

(C) 2.30

(D) 3.40

(E) 3.70

8. Calculate the concentrations of  $[PO_4^{3-}]$  of a 5.0 M H<sub>3</sub>PO<sub>4</sub> solution.

 $(K_{\rm a1} = 7.5 \times 10^{-3} , K_{\rm a2} = 6.2 \times 10^{-8}, K_{\rm a3} = 4.8 \times 10^{-13})$ 

(A) 0.19 M

(B) 0.72 M

(C)  $7.5 \times 10^{-3}$  M (D)  $6.2 \times 10^{-8}$  M (E)  $1.6 \times 10^{-1.9}$  M

(背面仍有題目,請繼續作答)

| 93學年度國立                                                                                            | L 成 功 大 學<br>所招生考試                                                                                                                      | 化學系 在聯<br>班)                                                                                                       | ·專班 綜合化學 ( -                                                                          | 專試題 共4 頁第 第 2 頁                              |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|
|                                                                                                    |                                                                                                                                         | ted with 0.15 MHCl<br>ammonia solution?<br>(C) 9.21                                                                |                                                                                       | the solution after 15.00 (E) 7.00            |
| (A) Al(OH) <sub>3</sub>                                                                            | $K_{\rm sp} = 2 \times 10^{-32}$                                                                                                        | ds has the lowest solution (B) $Sn(OH)_2$ $K_{Sp} = (E) MgC_2O_4$ $K_{Sp} = (E) MgC_2O_4$                          | ability in mol/L in wa<br>= 3 × 10 <sup>-30</sup> (C) CdS<br>= 8.6 × 10 <sup>-5</sup> | ter? $K_{\rm sp} = 1.0 \times 10^{-28}$      |
| I. mass<br>(A) I, III, and                                                                         | II. temperatur<br>V (B) II only                                                                                                         | (C) II and IV                                                                                                      | IV. concentration (D) III and IV                                                      | (E) II and V                                 |
| C <sub>2</sub> H <sub>5</sub> OF<br>C <sub>2</sub> H <sub>4</sub> (g)<br>C (graph                  | $I(l) + 3 O_2(g) \rightarrow 3 H$<br>+ $3 O_2(g) \rightarrow 2 CO_2$<br>ite) + $3 H_2(g) + (1/2 G)$<br>$I(g) + H_2O(l) \rightarrow C_2$ | $I_2O(1) + 2 CO_2(g)$<br>$I_2O(1) + 2 H_2O(1)$<br>$I_2O(g) \rightarrow C_2H_5OH$<br>$I_2O(g) \rightarrow C_2H_5OH$ | $\Delta H$                                                                            | kJ $0 = -1411 kJ$ $0 = -278 kJ$ $0 = -44 kJ$ |
| 13. At 1 atm, a me<br>molar heat of a<br>(A) 0                                                     | etal M melt at 1060                                                                                                                     |                                                                                                                    | (J/Kmol) of process                                                                   |                                              |
| Calculate the o                                                                                    | re of 2.00 mol Ne(g)<br>change in the entropy<br>(B) 86.4                                                                               | (J/K) of neon. As                                                                                                  | 5 °C to 200 °C at consume ideal behavior. (D) 11.5                                    | stant pressure. (E) 0                        |
| Calculate ∆G°                                                                                      | at 25°C.                                                                                                                                | PbSO <sub>4</sub> + 2 H <sub>2</sub> O<br>(C) -394 kJ                                                              | For such a cell E° (D) -197 kJ                                                        | is 2.04 V.<br>(E) -0.121 kJ                  |
| electrode imme<br>Co <sup>2-</sup><br>Pb <sup>2+</sup><br>If [Co <sup>2+</sup> ] <sub>0</sub> is 0 | ersed in 1.0M Pb <sup>2+</sup> .<br>$^{+} + 2e^{-} \rightarrow Co  E^{\circ} =$<br>$^{-} + 2e^{-} \rightarrow Pb  E^{\circ} =$          | -0.28 V<br>-0.13 V<br>0 is 0.10 M, calculat                                                                        | e immersed in 1.0M Control of the E.  (D) 0.27                                        | Co <sup>2+</sup> and a lead (E) 0.35         |
| 17. If a particle is of to be found at (A) 50.5 pm                                                 | confined to a one-din                                                                                                                   | nension box of length<br>(C) 150 pm                                                                                | n 300 pm, for Ψ <sub>4</sub> the (D) 187.5 pm                                         | particle is most likely (E) 300 pm           |

| 9                                                                                        | )3學年度國 立 成<br>研究所才                                                                                                                        | 功 大 學<br>習生考試                                                                           | 化學系                                                                                             | 在職專班<br>班)                                            | 綜合化學 (                                                     | 專試題                       | 共<br>4<br>第 3                    | 頁頁                             |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|---------------------------|----------------------------------|--------------------------------|
| 18                                                                                       | What is the proba $\frac{-2r}{a_0}$                                                                                                       | bility of findin                                                                        | g an electron ir                                                                                | a small regio                                         | on of an atom                                              | ls orbital                | _                                |                                |
|                                                                                          | $\Psi_{1S} = e^{-2r/a_0}$ at small region location (A) 0.018                                                                              | ted at 3a <sub>0</sub> from (B) 5.2                                                     | from the nucleu<br>the nucleus?<br>(C) 14                                                       |                                                       | ne probability (D) 55                                      |                           |                                  | same                           |
| 19                                                                                       | . From the spectrur                                                                                                                       | n of hydrogen                                                                           | atom, the first a                                                                               | and second lin                                        | nes are 121.6 n                                            |                           | 2980<br>2.6 nm,                  |                                |
|                                                                                          | respectively. Wi                                                                                                                          | hat will be way<br>(B) 97                                                               | elength (nm) o<br>(C) 91                                                                        | f the third line                                      | e?<br>(D) 87                                               | (E) 8                     |                                  |                                |
| 20                                                                                       | Give the followin<br>2080, 1680, 1000<br>(A) F (2080), Ne<br>(B) F (2080), Ne<br>(C) F (1680), Ne<br>(D) F (1680), Ne<br>(E) F (2080), Ne | , 736 kJ/mol, n<br>(1680), Mg (10<br>(736), Mg (168<br>(2080), Mg (10<br>(2080), Mg (73 | natch the atoms<br>200), and S (736<br>30), and S (1000<br>200), and S (736<br>36), and S (1000 | with their fir  (i)  (i)  (i)  (i)                    | ionization ene<br>st ionization e                          | ergies: F, N<br>nergies.  | le, Mg, S                        | S and                          |
| 21.                                                                                      |                                                                                                                                           | $O_{(g)} + O_{2(g)} \leftrightarrow N$<br>$O_{3(g)} + O_{2(g)} \rightarrow N$           | NO <sub>3</sub> Fa<br>2 NO <sub>2(g)</sub> Sl                                                   | ıst equilibriur                                       |                                                            |                           |                                  |                                |
|                                                                                          | (A) $k[NO]^2[O_2]$<br>(D) $k[NO][O_2]^2$                                                                                                  |                                                                                         | (B) k[NO] <sup>2</sup><br>(E) k[NO][NO                                                          | )3]                                                   | (C) k[N                                                    | O][O <sub>2</sub> ]       |                                  |                                |
| 22.                                                                                      | For a second –ord is 2.5 mol L <sup>-1</sup> s <sup>-1</sup> . (A) 0.251                                                                  | er reaction: 2A<br>The half-life<br>(B) 0.142                                           | → product, the (sec) of reaction (C) 0.06                                                       | n with $[A]_0 =$                                      | 0.7 mol L <sup>-1</sup> is                                 | ion for [A]<br>?<br>(E) 0 |                                  | nol L                          |
| 23. What is the hybridization of the central Xe atom in the molecule XeCl <sub>2</sub> ? |                                                                                                                                           |                                                                                         |                                                                                                 |                                                       |                                                            |                           |                                  |                                |
|                                                                                          | (A) sp                                                                                                                                    | (B) sp <sup>2</sup>                                                                     | (C) sp <sup>3</sup>                                                                             | (                                                     | D) dsp <sup>3</sup>                                        | (E) d                     | •                                |                                |
| 24.                                                                                      | Which of the follo<br>(A) H <sub>2</sub> <sup>+</sup>                                                                                     | wing is predict<br>(B) H <sub>2</sub> <sup>-</sup>                                      | ted by the MO r<br>(C) Be <sub>2</sub>                                                          |                                                       | nstable diatom<br>D) B <sub>2</sub>                        | ic species<br>(E) C       |                                  |                                |
| 25.                                                                                      | Which of the follo (A). NO                                                                                                                |                                                                                         | as the highest b<br>(C). N <sub>2</sub>                                                         |                                                       | D). O <sub>2</sub>                                         | (E). (                    | D <sub>2</sub> -                 |                                |
| 26.                                                                                      | The transition met (A). $[Ti(H_2O)_6]^{3+}$                                                                                               | al complex tha<br>(B). [Cu(H <sub>2</sub> 0                                             | t would not exh $[0)_6]^{2+}$ (C). [                                                            | ibit the Jahn-<br>FeF <sub>6</sub> ] <sup>3-</sup> (1 | Teller effect is<br>D). [CoF <sub>6</sub> ] <sup>3</sup> - |                           | Co(H <sub>2</sub> O              | ) <sub>6</sub> ] <sup>2+</sup> |
| 27.                                                                                      | Which of the follows: I. Ni(CO) <sub>4</sub> (A) I, II, III (D) I, III, IV                                                                | II. [NiCl4] <sup>2</sup> -                                                              | aramagnetic?<br>III. [Fe(H <sub>2</sub> (<br>(B) II, III, IV<br>(E) II, III, V                  | ))6] <sup>2+</sup> IV                                 | 7. [Fe(CN) <sub>6</sub> ] <sup>4</sup> -<br>(C) I, II,     |                           | H <sub>2</sub> O) <sub>6</sub> ] | 3+                             |
|                                                                                          |                                                                                                                                           | (書                                                                                      | 面仍有题                                                                                            | 目,請繼續                                                 | 作答》                                                        |                           | •                                |                                |

|     | 93學年度國立成功<br>究所招生                                                                   | 大學 化學系                                                                                                                                                           | 在職專班<br>班)                                                   | 綜合化學(                                    | 專試題                                   | 共 <b>4</b><br>第 <b>4</b> | 頁頁   |
|-----|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|---------------------------------------|--------------------------|------|
|     |                                                                                     |                                                                                                                                                                  |                                                              |                                          |                                       |                          |      |
| 28  | The enthalpy of vapori<br>boiling point of water a<br>(A) 12.5 °C (B)               | zation for water is 40.7 k<br>at 520 torr is<br>) 81.3°C (C) 89.                                                                                                 | $J/mol. (T_b = 10)$ $5^{\circ}C$ (E                          | 00 °C, R = 8.3<br>O) 91.8°C              | 145 J/K m<br>(E) 99                   |                          | the  |
| 29  |                                                                                     | tements is correct for nice (Ni = 58.7 g/mol) oms per unit cell is 2. soms per unit cell is 4. gth is $3.85 \times 10^{-8}$ cm. let is $1.36 \times 10^{-8}$ cm. |                                                              |                                          |                                       | unit cell,               | with |
| 30. |                                                                                     | f a solution saturated wit<br>M <sub>3</sub> X <sub>2</sub> , assuming ideal b<br>(B) 4.7 x 10 <sup>-1</sup><br>(E) 1.5 x 10 <sup>-1</sup>                       | ehavior.<br>9                                                | is 2.64 x 10 <sup>-2</sup><br>(C) 5.32 x |                                       | °C.                      |      |
| 31. | Which types of process I. α decay II. β (A) I, II (D) II, III, IV                   | es are likely when the ne<br>decay III. positi<br>(B) II, III<br>(E) II, IV                                                                                      | utron-to-proton<br>ron production                            |                                          | ectron cap                            |                          |      |
| 32. |                                                                                     | a half-life of 30 years.<br>131 sample is closest to.<br>). 24.00 (C). 36                                                                                        |                                                              | ars, about 3 grams.<br>(D). 42.00        |                                       | n. The                   |      |
| 33. | Which of following state hydrogen atoms) of C-C  C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C- | ements is correct for the  C  (B) II, III, IV  (E) I, II, III, I                                                                                                 | I. a C <sub>12</sub> II. a subs III. a com IV a com V. a com |                                          | tertiary ca<br>secondary<br>isopropyl | rbons<br>carbons         |      |
| 34. | Which of the following (A) 2-chloropropane (D) [CoCl <sub>6</sub> ] <sup>3</sup> -  | is optically active (i.e., c<br>(B) 3-chlorop<br>(E) [Co(en) <sub>3</sub> ]                                                                                      | entane                                                       | (C) 3,3-                                 | -dichloroh                            | exane                    |      |