| | 編號: 056 | |---|--| | 93學年度國立成功大學 化學系
研究所招生考試 | 在職專班 綜合化學(專 試題 共 4 頁 班) | | 單一選擇題:(第1、2二題各2分;3-34 | 毎題3分) | | Arrangement of following according to ex
Waal's equation? | spected value for b (volume correction value) in van der | | (A). He $<$ HF $<$ H ₂ O $<$ CO ₂ $<$ SF ₆ | (B). He $<$ H ₂ O $<$ HF $<$ CO ₂ $<$ SF ₆ | | (C). He $<$ HF $<$ CO ₂ $<$ H ₂ O $<$ SF ₆ | (D). He $<$ HF $<$ H ₂ O $<$ SF ₆ $<$ CO ₂ | | (E). $SF_6 < H_2O < CO_2 < HF < He$ | 2 0 0 0 2 | | Put the following gases in order form sma | illest to the largest according to van der Waal's constant a | | (pressure correction value)? | and the support suppor | | (A). $H_2 < N_2 < CH_4 < H_2O$ | (B). Ne $<$ N ₂ $<$ H ₂ $<$ CH ₄ $<$ H ₂ O | | (C). Ne $<$ H ₂ $<$ N ₂ $<$ CH ₄ $<$ H ₂ O | (D). Ne $<$ H ₂ $<$ N ₂ $<$ H ₂ O $<$ CH ₄ | | (E). $CH_4 < H_2O < N_2 < H_2 < Ne$ | | | The rate of effusion of freon-12 to freon-1 | 1 is 1.07:1. The molar mass of freon-11 is 137.4 g/mol. | | what is the molar mass, in g/mol of freon- | -12? | | (A). 147.0 (B). 142
(D). 128.4 (E). 120 | (-). | | (D). 128.4 (E). 120. | .0 | | For the hypothetical reactions 1 and 2. | | | 1. $A_2(g) + B_2(g) \leftrightarrow 2 AB(g)$ | $K_1 = 10^2$ | | 2. $2 A_2(g) + C_2(g) \leftrightarrow 2 A_2C$ (| (g) $K_2 = 10^{-4}$ | | 3. $A_2C(g) + B_2(g) \leftrightarrow 2 AB(g)$ | $(g) + \frac{1}{2} C_2(g)$ What is the value for K for reaction 3? | | | C). 10 ² (D). 10 ⁴ (E). 10 ⁶ | | . Which of the following statements is true? | | | (A) A system at a state of chemical equilib | rium is microscopically static and macroscopically | | dynamic. (B) Catalysts are no effective means of abo | anging the most in a few and it is | | (B) Catalysts are no effective means of cha(C) The concentration of the products equal | als that of reactants and is constant at equilibrium. | | (D) When heat is added to an exothermic r | eaction, the reaction shifts toward products. | | (E) The equilibrium constant is independent | nt of temperature. | | In pure liquid ammonia, the equilibrium of | oncentrations of both $[NH_4^+]$ and $[NH_2^-]$ are 3×10^{-14} | M at 25°C. Which of the following equations holds for liquid ammonia solutions at 25°C? (A) $pNH_4^+ + pNH_2^- = 13.5$ (B) $pNH_4^+ = pNH_2^- = 13.5$ (C) $pNH_4^+ = 27.0$ (D) $pNH_4^+ = 27.0 - pNH_2^-$ (E) $pNH_4^+ = log [pNH_4^+]$ 7. For nitrous acid, HNO₂, $K_a = 4.0 \times 10^{-4}$. Calculate the pH of 0.25 M HNO₂. (A) 1.56 (B) 2.00 (C) 2.30 (D) 3.40 (E) 3.70 8. Calculate the concentrations of $[PO_4^{3-}]$ of a 5.0 M H₃PO₄ solution. $(K_{\rm a1} = 7.5 \times 10^{-3} , K_{\rm a2} = 6.2 \times 10^{-8}, K_{\rm a3} = 4.8 \times 10^{-13})$ (A) 0.19 M (B) 0.72 M (C) 7.5×10^{-3} M (D) 6.2×10^{-8} M (E) $1.6 \times 10^{-1.9}$ M (背面仍有題目,請繼續作答) | 93學年度國立 | L 成 功 大 學
所招生考試 | 化學系 在聯
班) | ·專班 綜合化學 (- | 專試題 共4 頁第 第 2 頁 | |--|---|--|---|--| | | | ted with 0.15 MHCl
ammonia solution?
(C) 9.21 | | the solution after 15.00 (E) 7.00 | | (A) Al(OH) ₃ | $K_{\rm sp} = 2 \times 10^{-32}$ | ds has the lowest solution (B) $Sn(OH)_2$ $K_{Sp} = (E) MgC_2O_4$ $K_{Sp} = (E) MgC_2O_4$ | ability in mol/L in wa
= 3 × 10 ⁻³⁰ (C) CdS
= 8.6 × 10 ⁻⁵ | ter? $K_{\rm sp} = 1.0 \times 10^{-28}$ | | I. mass
(A) I, III, and | II. temperatur
V (B) II only | (C) II and IV | IV. concentration (D) III and IV | (E) II and V | | C ₂ H ₅ OF
C ₂ H ₄ (g)
C (graph | $I(l) + 3 O_2(g) \rightarrow 3 H$
+ $3 O_2(g) \rightarrow 2 CO_2$
ite) + $3 H_2(g) + (1/2 G)$
$I(g) + H_2O(l) \rightarrow C_2$ | $I_2O(1) + 2 CO_2(g)$
$I_2O(1) + 2 H_2O(1)$
$I_2O(g) \rightarrow C_2H_5OH$
$I_2O(g) \rightarrow C_2H_5OH$ | ΔH | kJ $0 = -1411 kJ$ $0 = -278 kJ$ $0 = -44 kJ$ | | 13. At 1 atm, a me
molar heat of a
(A) 0 | etal M melt at 1060 | | (J/Kmol) of process | | | Calculate the o | re of 2.00 mol Ne(g)
change in the entropy
(B) 86.4 | (J/K) of neon. As | 5 °C to 200 °C at consume ideal behavior. (D) 11.5 | stant pressure. (E) 0 | | Calculate ∆G° | at 25°C. | PbSO ₄ + 2 H ₂ O
(C) -394 kJ | For such a cell E° (D) -197 kJ | is 2.04 V.
(E) -0.121 kJ | | electrode imme
Co ²⁻
Pb ²⁺
If [Co ²⁺] ₀ is 0 | ersed in 1.0M Pb ²⁺ .
$^{+} + 2e^{-} \rightarrow Co E^{\circ} =$
$^{-} + 2e^{-} \rightarrow Pb E^{\circ} =$ | -0.28 V
-0.13 V
0 is 0.10 M, calculat | e immersed in 1.0M Control of the E. (D) 0.27 | Co ²⁺ and a lead (E) 0.35 | | 17. If a particle is of to be found at (A) 50.5 pm | confined to a one-din | nension box of length
(C) 150 pm | n 300 pm, for Ψ ₄ the (D) 187.5 pm | particle is most likely (E) 300 pm | | 9 |)3學年度國 立 成
研究所才 | 功 大 學
習生考試 | 化學系 | 在職專班
班) | 綜合化學 (| 專試題 | 共
4
第 3 | 頁頁 | |--|---|---|---|---|--|---------------------------|----------------------------------|--------------------------------| | 18 | What is the proba $\frac{-2r}{a_0}$ | bility of findin | g an electron ir | a small regio | on of an atom | ls orbital | _ | | | | $\Psi_{1S} = e^{-2r/a_0}$ at small region location (A) 0.018 | ted at 3a ₀ from (B) 5.2 | from the nucleu
the nucleus?
(C) 14 | | ne probability (D) 55 | | | same | | 19 | . From the spectrur | n of hydrogen | atom, the first a | and second lin | nes are 121.6 n | | 2980
2.6 nm, | | | | respectively. Wi | hat will be way
(B) 97 | elength (nm) o
(C) 91 | f the third line | e?
(D) 87 | (E) 8 | | | | 20 | Give the followin
2080, 1680, 1000
(A) F (2080), Ne
(B) F (2080), Ne
(C) F (1680), Ne
(D) F (1680), Ne
(E) F (2080), Ne | , 736 kJ/mol, n
(1680), Mg (10
(736), Mg (168
(2080), Mg (10
(2080), Mg (73 | natch the atoms
200), and S (736
30), and S (1000
200), and S (736
36), and S (1000 | with their fir (i) (i) (i) (i) | ionization ene
st ionization e | ergies: F, N
nergies. | le, Mg, S | S and | | 21. | | $O_{(g)} + O_{2(g)} \leftrightarrow N$
$O_{3(g)} + O_{2(g)} \rightarrow N$ | NO ₃ Fa
2 NO _{2(g)} Sl | ıst equilibriur | | | | | | | (A) $k[NO]^2[O_2]$
(D) $k[NO][O_2]^2$ | | (B) k[NO] ²
(E) k[NO][NO |)3] | (C) k[N | O][O ₂] | | | | 22. | For a second –ord is 2.5 mol L ⁻¹ s ⁻¹ . (A) 0.251 | er reaction: 2A
The half-life
(B) 0.142 | → product, the (sec) of reaction (C) 0.06 | n with $[A]_0 =$ | 0.7 mol L ⁻¹ is | ion for [A]
?
(E) 0 | | nol L | | 23. What is the hybridization of the central Xe atom in the molecule XeCl ₂ ? | | | | | | | | | | | (A) sp | (B) sp ² | (C) sp ³ | (| D) dsp ³ | (E) d | • | | | 24. | Which of the follo
(A) H ₂ ⁺ | wing is predict
(B) H ₂ ⁻ | ted by the MO r
(C) Be ₂ | | nstable diatom
D) B ₂ | ic species
(E) C | | | | 25. | Which of the follo (A). NO | | as the highest b
(C). N ₂ | | D). O ₂ | (E). (| D ₂ - | | | 26. | The transition met (A). $[Ti(H_2O)_6]^{3+}$ | al complex tha
(B). [Cu(H ₂ 0 | t would not exh $[0)_6]^{2+}$ (C). [| ibit the Jahn-
FeF ₆] ³⁻ (1 | Teller effect is
D). [CoF ₆] ³ - | | Co(H ₂ O |) ₆] ²⁺ | | 27. | Which of the follows: I. Ni(CO) ₄ (A) I, II, III (D) I, III, IV | II. [NiCl4] ² - | aramagnetic?
III. [Fe(H ₂ (
(B) II, III, IV
(E) II, III, V |))6] ²⁺ IV | 7. [Fe(CN) ₆] ⁴ -
(C) I, II, | | H ₂ O) ₆] | 3+ | | | | (書 | 面仍有题 | 目,請繼續 | 作答》 | | • | | | | 93學年度國立成功
究所招生 | 大學 化學系 | 在職專班
班) | 綜合化學(| 專試題 | 共 4
第 4 | 頁頁 | |-----|---|--|--|--|---------------------------------------|--------------------------|------| | | | | | | | | | | 28 | The enthalpy of vapori
boiling point of water a
(A) 12.5 °C (B) | zation for water is 40.7 k
at 520 torr is
) 81.3°C (C) 89. | $J/mol. (T_b = 10)$ $5^{\circ}C$ (E | 00 °C, R = 8.3
O) 91.8°C | 145 J/K m
(E) 99 | | the | | 29 | | tements is correct for nice (Ni = 58.7 g/mol) oms per unit cell is 2. soms per unit cell is 4. gth is 3.85×10^{-8} cm. let is 1.36×10^{-8} cm. | | | | unit cell, | with | | 30. | | f a solution saturated wit
M ₃ X ₂ , assuming ideal b
(B) 4.7 x 10 ⁻¹
(E) 1.5 x 10 ⁻¹ | ehavior.
9 | is 2.64 x 10 ⁻²
(C) 5.32 x | | °C. | | | 31. | Which types of process I. α decay II. β (A) I, II (D) II, III, IV | es are likely when the ne
decay III. positi
(B) II, III
(E) II, IV | utron-to-proton
ron production | | ectron cap | | | | 32. | | a half-life of 30 years.
131 sample is closest to.
). 24.00 (C). 36 | | ars, about 3 grams.
(D). 42.00 | | n. The | | | 33. | Which of following state hydrogen atoms) of C-C C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C- | ements is correct for the C (B) II, III, IV (E) I, II, III, I | I. a C ₁₂ II. a subs III. a com IV a com V. a com | | tertiary ca
secondary
isopropyl | rbons
carbons | | | 34. | Which of the following (A) 2-chloropropane (D) [CoCl ₆] ³ - | is optically active (i.e., c
(B) 3-chlorop
(E) [Co(en) ₃] | entane | (C) 3,3- | -dichloroh | exane | |