國立成功大學84 學年度轉學生考試(統計學 試題)第2頁

注意事項:

- 1. 答案一律寫在試卷上,否則不予計分。
- 2. 請標明題號依序作答,不必抄題。
- 3. 試題應隨同試卷繳回,不得關出試場。

1. (28 points) An urn contains 3 white balls and 4 red balls and balls are to be drawn from the urn.

- (a) If the balls are drawn with replacement n times and we count the number of white balls (denoted as Y_I) in the sample. What is the distribution of Y_I ?
- (b) For (a), find $E(Y_I)$ and $Var(Y_I)$.
- (c) If the balls are drawn without replacement n times and we let Y_2 be the number of white balls in the experiment. What is the distribution of Y_2 ?
- (d). For (c), find $E(Y_2)$ and $Var(Y_2)$.
- (e) Compare the results in (b) and (d). Explain intuitively the results.
- (f) If the experiment now is set to be drawing balls with replacement from the urn until one white ball is observed. Let Y_j be the number of times needed to have one white ball. What is the distribution of Y_j ?
- (g) What is the distribution of Y_3 if now the condition of the experiment in (f) "with replacement" is replaced by "without replacement"?

2.(12 points) State True or False for the following statements. You <u>must</u> briefly describe the reasons why they are true or false.

- (a) If X and Y are two random variables and Cov(X,Y) = 0, then X and Y are independent.
- (b) If X and Y are two normal random variables, then X+Y and X-Y are normal and are independently distributed.
- (c) If (X,Y) is bivariate normal, then X+Y and X-Y are normal and are independently distributed.
- (d) If (X,Y) is bivariate normal and Cov(X,Y) = 0, then X and Y are independent normal.

3.(12 points) Let
$$X_1, X_2, ..., X_6$$
 be an i.i.d. random sample from N(2,1). Let $Y_i = I$ if $X_i \le 2$; = 0, otherwise. Define $T = \sum_{i=1}^6 Y_i$.

- (a) Find E(T) and Var(T).
- (b) What is the distribution of T? Compute P(T = j), the probability of T = j, where j ranges over all the possible values of T.
- (c) Compute P(T = j) by normal approximation with continuity correction.
- (d) Comment on the results in (b) and (c).
- 4. (8 points) We usually use sample mean, median and trimmed mean to represent the concentration of the collected data. State the advantages and disadvantages of the three location measures.

Note: A p% trimmed mean for a random sample $X_1, X_2, ..., X_n$ is defined as the average of the data left after (1/2)p% of the smallest and (1/2)p% of the largest ordered values of $X_1, X_2, ..., X_n$ are trimmed.

(背面仍有題目,請繼續作答)

- 5. (5 points) Suppose X_P , X_2 , ..., X_{n_I} is an i.i.d. random sample from $N(\mu_P, \sigma_I^2)$ and Y_P , Y_2 , ..., Y_{n_2} is an i.i.d. random sample from $N(\mu_P, \sigma_2^2)$. From these two sets of data, we found range of $X_i = 2$ and range of $Y_i = 10$. Can we claim that the variance of Y is larger than the variance of X? Why?
- 6. (5 points) Suppose we have two sets of data coming from two normal distributions. The sample means and sample sizes are $\bar{X}=5$, $n_1=100$ and $\bar{Y}=100$, $n_2=100$, respectively. Then in testing H_0 : $\mu_I=\mu_2$ vs H_I : $\mu_I\neq\mu_2$, we will conclude H_I since $\bar{Y}=\bar{X}=95$ is sufficiently large.

For Problems 7 and 8, suppose we have normal populations.

- 7. (5 points) In testing H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 \neq \mu_2$, why we usually construct the test statistic based on $\hat{\mu}_2$ $\hat{\mu}_1 = \bar{Y}$ \bar{X} , but $\bar{W}\bar{X}$?
- 8. (5 points) In testing H_0 : $\sigma_1^2 = \sigma_2^2 vs H_1$: $\sigma_1^2 \neq \sigma_2^2$ why we usually construct the test statistic based on $\hat{\sigma}_1^2/\hat{\sigma}_2^2 = \hat{S}_1^2/\hat{S}_2^2$, but not $\hat{\sigma}_1^2 \hat{\sigma}_2^2 = \hat{S}_1^2 \hat{S}_2^2$? Here \hat{S}_i^2 is unbiased sample variance of σ_i^2 , i = 1, 2.
- 9. (5 points) Let "X and Y be two random variables. If Cov(X,Y) = 0, then X and Y do not have any relationship." Is this statement correct? Why?
- 10. (15 points) The following data are collected

$$Y_1$$
: 1 2 3 4 5.1 X_4 : -0.2 -0.1 0 0.1 0.2

- (a) Give the scatterplot. Does the plot reveal a strong linear association between Y and X?
- (b) Suppose simple linear regression model is suitable for the data, write down the model and the necessary assumptions so that inference based on small sample can be made. Suppose $Var(Y_i) = 10$.
- (c) Find the estimated least squares line.
- (d) Test H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$; i.e. whether there exists linear association between Y and X at $\alpha = 0.05$.
- (c) Does the results in (d) contradict your observation in (a)? Why?