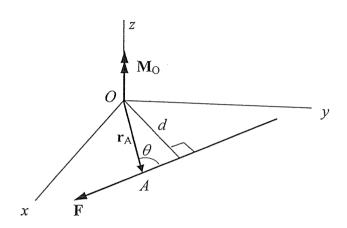
臺灣綜合大學系統

108 學年度 學士班 轉學生聯合招生考試

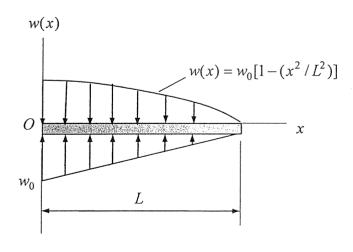
試

題

類組: D37

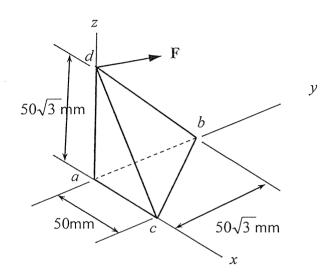

科目名稱:應用力學

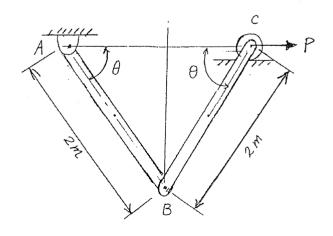
科目代碼: D3791


臺灣綜合大學系統 108 學年度學士班轉學生聯合招生考試試題

科目名稱 應用力學	库田	類組代碼	D37
	應用刀字	科目碼	D3791
※太項老言	*************************************	本 科 試 是	原共計 2 百

1. As shown in the figure, use the basic <u>definition of vector cross-product</u> and prove that the moment vector \mathbf{M}_O produced by force \mathbf{F} about the point O can be computed by the vector equation $\mathbf{M}_O = \mathbf{r}_A \times \mathbf{F}$. In the figure, point A is an arbitrary point on the line of action of force \mathbf{F} , \mathbf{r}_A is position vector from O to A, d is the shortest distance between line of action of the force and point O. (25%)


2. A cantilever beam is subjected to two distributed loads as shown. Replace the distributed loads by a resultant force and couple moment acting at point O. (25%)


臺灣綜合大學系統 108 學年度學士班轉學生聯合招生考試試題

科目名稱	應用力學	類組代碼	D37
		科目碼	D3791
※木頂老試佐館音相定久老科均「不可以,佑田計管機 太科試題出計 ? 百			

3. A force F of a magnitude 100 N acts on the top of the tetrahedron *abcd* as shown. Let the direction angles of vector F be $\alpha = 60^{\circ}$, $\beta = 60^{\circ}$, $\gamma = 45^{\circ}$. Use the 3D vector formula to determine the magnitude of the moment about the *b-c* axis. In addition, determine the shortest distance between *b-c* axis and the line of action of the force F? (25%)

4. Use the <u>method of virtual displacement</u> and determine the required magnitude of force P to maintain the equilibrium of linkage at $\theta = 60^{\circ}$. The weight of each link is W. Point A is a hinge, point B is a pin and point C is a roller. (25%)

