### 臺灣綜合大學系統

107 學年度 學士班 轉學生聯合招生考試

# 

## 題

類組:A06/A07/A09/A10/A11

科目名稱:微積分A

科目代碼: E0011

#### 臺灣綜合大學系統 107 學年度學士班轉學生聯合招生考試試題

|  | 科目名稱 微積分 A               | 類組代碼  | 共同考科       |       |
|--|--------------------------|-------|------------|-------|
|  |                          | 似何为 A | 科目碼        | E0011 |
|  | ※本項考試依簡章規定各考科均「不可以」使用計算機 |       | 本科試題共計 2 頁 |       |

題號標示清楚,寫出計算過程否則不予計分,答案儘可能化簡。

- 1. (10 Points) Evaluate:
  - (a) (5 Points)  $\lim_{n\to\infty} \frac{n}{n+1}$
  - (b) (5 Points)  $\lim_{x\to 0} e^{-\frac{1}{x^2}} \left( \frac{1}{x^5} \frac{3}{x^3} \right)$
- 2. (10 Points) Find the point on the curve  $y = x^{3/2}$  that is closest to the point  $(\frac{5}{2}, 0)$ .
- 3. (10 Points) Find the length of the parametric curve

$$x = 3t^2$$
,  $y = 2t^3$ ,  $0 \le t \le 1$ .

4. (10 Points) Determine whether the improper integral

$$\int_{1}^{\infty} \frac{1 - \cos x}{x^2} dx$$

is convergent or divergent.

- 5. (10 Points) Find the radius of convergence of the power series  $\sum_{n=1}^{\infty} n^2 x^n$  and evaluate  $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ .
- 6. (10 Points) Find the equation of the tangent plane and the normal line to the surface

$$S: x^2y + e^{xyz} - 2\cos(xz) = 0$$

at (1,1,0).

7. (10 Points) Let  $f: \mathbb{R}^2 \to \mathbb{R}$  be a function. Assume that all second partial derivatives of f exist and continuous and

$$f_{xx} + f_{yy} = 0$$
, for all  $(x, y) \in \mathbb{R}^2$ .

Define  $g: \mathbb{R}^2 \to \mathbb{R}$  by  $g(u, v) = f(u^2 - v^2, 2uv)$ . Find  $g_{uu} + g_{vv}$ .

8. (10 Points) Evaluate the double integral  $\iint_D \sin(x+y)dA$  where D is the region bounded by  $x+y=\pi$ , x+y=0 and  $x-y=\pi$  and x-y=0.

### 臺灣綜合大學系統 107 學年度學士班轉學生聯合招生考試試題

| 科目名稱  | 微積分 A                       | 類組代碼       | 共同考科  |
|-------|-----------------------------|------------|-------|
|       | (成有 刀 A)                    | 科目碼        | E0011 |
| ※本項考記 | <b>试依簡章規定各考科均「不可以」使用計算機</b> | 本科試題共計 2 頁 |       |

- 9. (10 Points) Evaluate the triple integral  $\iiint_E \sqrt{x^2 + y^2} dV$ , where E is the solid region in  $\mathbb{R}^3$  bounded by the surface z = 1 and  $z = x^2 + y^2$ .
- 10. (10 Points) Evaluate the line integral  $\int_C (ye^x + \sin y) dx + (e^x + x\cos y) dy$  along the curve  $C: \mathbf{r}(t) = (t^2 + 1)\mathbf{i} + (t^2 1)\mathbf{j}, \ 0 \le t \le 2$ . Hint: you may find a potential function f of the vector field  $\mathbf{F}(x,y) = (ye^x + \sin y)\mathbf{i} + (e^x + x\cos y)\mathbf{j}$ , i.e. find f so that  $\mathbf{F} = \nabla f$ .