系所組別：全校
考試科目：微積分

※ 考生請注意：本試題 \square 可 $\sqrt{ }$ 不可 使用計算機

1．Suppose $f:(0, \infty) \rightarrow \mathrm{R}$ such that $\mathrm{f}(x)=\frac{\ln x}{1+\ln ^{2} x}$ ．
（a）Find the asymptotic lines of the graph $\mathrm{y}=f(x)$ ，if exist．
（b）Find the absolute extreme values of f ，if exist．

2．Define the function $E(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$ ．
（a）Show that $E(x)=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)}$ ．
（b）What is the domain of $\mathrm{E}(x)$ ？Explain your answer．

3．Let $f(x)=\int_{0}^{x} x \cos \left(t^{2}\right) d t$ ．Find $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ ．

4．For the double integral $\int_{0}^{1} \int_{\sin ^{-1} y}^{\frac{\pi}{2}} \cos x \sqrt{1+\cos ^{2} x} d x d y$ ，
（a）change the order of integration to be $d y d x$ ；
（b）and then evaluate the integral．

5．Let $f(x, y)=x^{3}-6 x y+y^{3}$ ．
（a）Find the critical points of $f(x, y)$ ．
（b）Determine whether the critical points are points of maximum，minimum values or saddle points．

6．For a differential equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$ ，
（a）use $z=\ln x$ to transform such an equation into an equation with constant coefficients；
（b）find the general solution of（a）in terms of x ．

7．Let the function $z=f(x-y, y-x)$ ．Prove that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$ ．

8．Let Q be the solid region cut from the sphere $x^{2}+y^{2}+z^{2}=4$ by the cylinder $r=2 \sin \theta$ ．
（a）List the double integral to find the volume of Q using polar coordinate system．
（b）Evaluate the double integral at（a）．

