編號	15 國立成功大學九十九學年度轉學生招生考試試題	共 / 頁 , 第 / 頁
	1別: 全校	
		試日期:0710,節次:3
* *	生請注意:本試題 □ 可 ☑ 不可 使用計算機	
1.	Suppose $f: (0, \infty) \to \mathbb{R}$ such that $f(x) = \frac{\ln x}{1 + \ln^2 x}$.	
	(a) Find the asymptotic lines of the graph $y = f(x)$, if exist.	(6%)
	(b) Find the absolute extreme values of f , if exist.	(8%)
2.	Define the function $E(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$.	
	(a)Show that $E(x) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}$.	(8%)
	(b)What is the domain of $E(x)$? Explain your answer.	(4%)
3.	Let $f(x) = \int_0^x x \cos(t^2) dt$. Find $f'(0)$ and $f''(0)$.	(10%)
4.	For the double integral $\int_0^1 \int_{\sin^{-1}y}^{\frac{\pi}{2}} \cos x \sqrt{1 + \cos^2 x} dx dy$,	
	(a) change the order of integration to be dydx;	(6%)
	(b) and then evaluate the integral.	(8%)
5.	Let $f(x, y) = x^3 - 6xy + y^3$.	
	(a) Find the critical points of $f(x, y)$.	(6%)
	(b) Determine whether the critical points are points of maximum, minimum values or	
	saddle points.	(8%)
6.	For a differential equation $x^2y'' - 3xy' + 4y = 0$, (a) use $z = \ln x$ to transform such an equation into an equation with cons	
	coefficients;	(6%)
	(b) find the general solution of (a) in terms of x .	(6%)
7.	Let the function $z = f(x - y, y - x)$. Prove that $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.	(10%)
8.	Let Q be the solid region cut from the sphere $x^2 + y^2 + z^2 = 4$ by the cy $r = 2 \sin \theta$.	linder
1	(a) List the double integral to find the volume of Q using polar coordinate s (b) Evaluate the double integral at (a).	ystem. (6%) (8%)