臺灣綜合大學系統

108 學年度 學士班 轉學生聯合招生考試

試

題

類組: D36

科目名稱:工程數學

科目代碼: D3691

臺灣綜合大學系統 108 學年度學士班轉學生聯合招生考試試題

科目名稱	工程數學	類組代碼	D36
		科目碼	D3691

- ※本項考試依簡章規定各考科均「不可以」使用計算機 本科試題共計 1 頁 Find the angle between the surfaces $xy^2z=3x+z^2$ and $3x^2-y^2+2z=1$ at the point(1, -2, 1). (10%)
- Use Laplace Transformation (with respect to t) to solve the partial differential equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ u(x, 0) = 0 $0 < x < \infty, 0 < t < \infty$ and u(0, t) = $-\int_0^t u(0,s)ds + e^{-2t} - 1.$ (10%)
- Prove $\nabla \times (\nabla \emptyset) = 0$. (10%)
- 4. To solve a PDE, we need to have boundary and initial conditions. There are also three types of boundary conditions: Dirichlet, Neumann, and Robin (mixed) conditions. Please clearly describe each type of boundary conditions. (10%)
- Find the Fourier series of the periodic function f(x),

$$f(x) = \begin{cases} 0, -\pi < x \le 0\\ \sin x, 0 < x \le \pi \end{cases} (10\%)$$

Use Cramer's rule to solve the system of linear equation,

$$\begin{cases}
-x + 2y - 3z = 1 \\
2x + z = 0 \\
3x - 4y + 4z = 2
\end{cases} (10\%)$$

Find the eigenvalues and corresponding eigenvectors for matrix A. What is the dimension of the eigenspace of each eigenvalue?

$$\mathbb{A} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} (10\%)$$

- Solve $\begin{cases} y_1''(t) = -y_1(t) y_2(t) + 1 \\ y_2'(t) = y_1(t) + y_2(t) \end{cases}; y_1(0) = y_1'(0) = y_2(0) = 0 (10\%)$
- Find $yy''(x) + (y+1)\{y'(x)\}^2 = 0$ (10%)
- 10. Prove that, the Fourier sine series $\frac{\pi x}{2} = \sum_{n=1}^{\infty} \frac{\sin nx}{n}$; $(0 \le x \le \pi)$ (10%)