编號: 11 國立成功大學一〇〇學年度轉學生招生考試試題	共了頁	第 /頁
系所組別: 生科、地科、化工、材料、環工系		
考試科目: 普通化學	考試日期:0710	· 節次:1
※考生請注意:本試題□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		
請勿在本試題紙上作答,否則不予計分		
說明:答案一律寫在答案卷上;請依序作答,並標明題號。 (h=6.626x10 ⁻³⁴ J s, R= 8.314 J/mol K, Ka(NH4 ⁺): 5.6x10 ⁻¹⁰ , Ka(HNO2): 4.0x10 ⁻⁴ Kai(H2CO3): 4.3x10 ⁻⁷ , Ka2(H2CO3): 4.8x10 ⁻¹¹)	,	
一、選擇題:(單選,每題3分,不倒扣,共75分)		
 What's the hybridization of the central atom in FNO? (A)sp (B)sp² (C)sp³ (D)dsp³ (E)d²sp³ What's the molecular shape for SeOF₂? (A)trigonal pyramidal (B)seesaw (C)trigonal bipyramidal (D)tetrahedral (E)bent Which of the following species (NO⁺, NO[*], NO, NO^{2⁻}, NO^{3⁻}) has the largest and smallest bond energy for N-O bond, respectively? (Assume that the orbital energy of same as that for N₂.) (A)NO⁺, NO[*] (B)NO, NO^{3⁻} (C)NO, NO[*] (D)NO⁺, NO^{3⁻} (E) NO[*], NO^{3⁻} 	order is the	
4. To make a buffered solution with pH 10.0, the ratio of NH ₄ Cl to NH ₃ must be		
(A)1.8:1 (B)1:1.8 (C)0.18:1 (D)1:0.18 (E)none of above 5. The molecular orbital electron configuration $(\sigma_{ls})^2 (\sigma_{ls}^*)^2 (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^4 (\sigma_{2p})^1$ applies to which of the following species?		
(A)N ₂ [•] (B)C ₂ [•] (C)BC (D)BN (E)CO 6. Which of the following are paramagnetic: (a)CN, (b)NO [•] , (c)O ₂ [•] , (d)BN?		
(A)a, b, c (B)b, c (C)a, b, d (D)a, b (E)a, b, c, d 7. Given that $Ag^{+}(aq) + 2 NH_{3}(aq) \iff Ag(NH_{3})_{2}^{+}(aq) (K_{eq}=1.72 \times 10^{7})$ calculate [Cl ⁻] _{eq} when the solid AgCl ($K_{sp}=1.6\times 10^{-10}$) is put in a 10.0 M NH ₃ solution	•	
 (A)0.39 M (B)0.14 M (C)0.47 M (D)0.28 M (E)0.52 M 8. Rank the following 0.10 M solutions in order from most acidic to most basic: (1)CaBr₂, (2)KNO₂, (3)NH₄ClO₄, (4)NH₄NO₂, (5)HNO₂ (A)5, 3, 1, 2, 4 (B)3, 5, 2, 4, 1 (C)5, 3, 4, 2, 1 (D)5, 3, 4, 1, 2 (E)5, 4, 1, 3, 2 9. Consider the titration of 25.0 mL of a 0.1 M solution of Na₂CO₃ with 0.1 M HCl. What's the pH of the solution after adding 12.5 mL HCl? (A)8.9 (B)9.3 (C)9.8 (D)10.1 (E)10.3 		
10. If $K_w(0 \ ^\circ C) = 1.14 \times 10^{-15}$ and $K_w(40 \ ^\circ C) = 2.92 \times 10^{-14}$ Calculate ΔS° (in J/K,mol) for autoionization of water: $H_2O(1) \iff H^+(aq) + OH^-(aq)$ (A)-30.6 (B)-52.8 (C)-75.1 (D)-84.2 (E)-104.3	the	
11. Calculate ΔH (in kJ/mol) in Problem 10. (A)57.6 (B)29.5 (C)48.3 (D)25.9 (E)33.8		
12. Given that $C_p=37.27$ J/K, mol and S°= 213.64 J/K, mol for CO ₂ at 25 °C and 1.0 atn	ı,	
Calculate the molar entropy (in J/K,mol) at 350 K and 2.0 atm. (A)213.9 (B)218.3 (C)215.3 (D)208.5 (E)210.6		
13. 3.0 mole of ideal gas ($\overline{C_v}$ =3R/2) at 25 °C expands reversibly and adiabatically from to 1.0 atm. Calculate the work (in kJ).	10.0 atm	

(背面仍有題目,請繼續作答)

	第七月
系所組別: 生科、地科、化工、材料、環工系	· · ·
考試科目: 普通化學 考試日期:0710	節次:1
※考生請注意:本試題 □ □ □ 不可 使用計算機	
(A)-6.7 (B)-2.2 (C)-8.5 (D)-12.4 (E)-10.8	
14. What's the final temperature (in K) in Problem 13?	
(A)180.3 (B)196.2 (C)126.5 (D)232.8 (E)118.6	
15. How many reactions listed below at constant pressure are predicted to have greater ΔH than ΔE ?	
(a) 2 $\Pi^{(g)} \to \Pi^{(g)} \to \Pi^{(g)} \to \Pi^{(g)} \to \Pi^{(g)} \to \Pi^{(g)} \to \Pi^{(g)} \to \Pi^{(g)}$ (c) 4 $\Pi^{(g)} \to 5 O_2(g) \to 4 \operatorname{NO}(g) + 6 \operatorname{H}_2O(g)$ (d) 2 $O_3(g) \to 3 O_2(g)$	
(A)0 (B)1 (C)2 (D)3 (E)4	
16. A certain reaction has the following general form: $a A \rightarrow b B$	
At a particular temperature and $[A]_0=2.80 \times 10^{-3}$ M, a plot of $1/[A]$ vs. time resulted in	
a straight line with a slope of 3.60×10^{-2} L/mol,s. What's the "third" half-life (in s)?	
(A)1.98x10 ⁴ (B)3.96 x10 ⁴ (C)4.35 x10 ³ (D)2.25 x10 ⁴ (E)7.92 x10 ⁴	
17. In 6 M HCl, the decomposition of the complex ion $Ru(NH_3)_6^{3+}$ is first order with a half-life of	
14 h at 25°C. How long (in hours) will it take for the $[Ru(NH_3)_6^{3+}]$ to decrease to 53.0% of its	
initial value?	
(A)15 (B)5.6 (C)6.6 (D)7.4 (E)13	
18. The reaction $2A + B \rightarrow C$ has the following proposed mechanism: Step 1: $A + B \rightarrow C$ (rate constant: k and k feet equilibrium)	
Step 2: $D + B \rightarrow E$ (rate constant: k)	
Step 2: $D + D \rightarrow E$ (rate constant. k_2) Step 3: $E + A \rightarrow C + P$ (rate constant. k_2)	
If step 2 is the rate determining step, what should be the rate of formation of C2	
(A) $k[A]$ (B) $k[A]^2[B]$ (C) $k[A][B]^2$ (D) $k[A][B]$ (E) $k[A]^2[B]^2$	
19. Calculate the equilibrium constant at 25 °C for $AgCl(s) \rightarrow Ag^+(ag) + Cl^{-}(ag)$	
given that $E^{\circ} = 0.22 V$ for AgCl(s) + e \rightarrow Ag(s) + Cl (aq) and $E^{\circ} = 0.80 V$ for	
Ag (aq) + $e \rightarrow Ag(s)$. (A) 1.2 x10 ⁻¹⁰ (B) 1.6 x10 ⁻¹⁰ (C) 2.4 x10 ⁻⁹ (D) 7.2 x10 ⁻⁹ (E) 1.2 x10 ⁻⁹	
20. Calculate the potential for the following cell at 25 °C	
Pt 1 H ₂ (g)(0.79 atm) 1 H ₃ O'(aq)(0.50 M) 11 Cl'(aq)(0.05 M) 1 Cl ₂ (g)(0.10 atm) 1 Pt given that $E^{0} = 1.3595$ V for Cl ₂ (g) + 2 e ⁻ $\rightarrow 2$ Cl'(aq)	
(A)1.26 V (B)1.42 V (C)0.96 V (D)1.58 V (E)1.06 V	
21. What's the systematic name of $(CH_3)_2CHCH_2CHOHCH_3$?	
(C)1,1-Dimethyl-3-hydroxybutane (D)2-Methyl-4-pentanol (E) 4- Methyl-2-pentanol	
22. Which of the following compounds doesn't react with the acidic KMnO ₄ solution?	
(E)glycerol	

編號:

11

系所組別: 生科、地科、化工、材料、環工系 考試科目: 普通化學

考試日期:0710、節次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

- 23. How many unpaired electrons are there for the tetrahedral complex $[CoCl_4]^{2-?}$ (A)0 (B)1 (C)2 (D)3 (E)4
- 24. Which of the following orders is correct for the ligands in the spectrochemical series? (A)CN⁻>OH⁻>NH₃>F⁻>I⁻
 (B)CN⁻>NH₃>OH⁻>F⁻>I⁻
 (C)CN⁻>NH₃>OH⁻>I⁻>F⁻
 (D)OH⁻>CN⁻>NH₃>I⁻>F⁻
 (E)none of above
- 25. Consider the synthesis of NH₃ from N₂ and H₂, an exothermic reaction. The reaction begins with a 3:1 mixture of H₂ and N₂ with temperature 400, 500, 600 °C, and total pressure 300, 400, 500 atm, respectively. Which experimental condition will give the highest yield of NH₃ at equilibrium? (A)600 °C, 500 atm (B)600 °C, 300 atm (C)400 °C, 500 atm (D)400 °C, 300 atm (E)500 °C, 400 atm
- 二、非選擇題:(共25分,計算題務必列出<u>計算過程</u>,只寫答案不計分)

1. The wave function of 2s orbital for hydrogen atom may be represented as A $[2-(r/a_0)] \exp(-r/(2 a_0))$,

where A and a_0 are constants, r is the distance between electron and nucleus, and exp represents an

exponential function with a base of e.

(a) What's the probability of finding the electron at $r=3a_0$ relative to that at $r=a_0$?

(b)Plot the radial probability distribution function, and calculate the location of local maximum. (9%)

- The rotational transition of ¹H³⁵Cl from J=0 to J=1 requires electromagnetic radiation with a wavelength of 4.85x10⁻⁴ m. The masses of ¹H and ³⁵Cl are 1.0078 and 34.9689 amu, respectively. The energy level is E_J= h²J(J+1)/(8π²I), where I is the moment of inertia. Calculate I (in kg m²) and the bond length (in pm) of this molecule? (8%)
- 3. The reaction $2 \operatorname{NO}(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$ is believed to take place by the following mechanism:

(1) NO + NO \rightleftharpoons N₂O₂ (rate constant: k₁ and k_{.1})

(2) $H_2 + N_2O_2 \rightarrow N_2O(g) + H_2O(g)$ (rate constant k_2)

(a)Calculate the concentration of N_2O_2 at steady state?

(b)Calculate -d[NO]/dt under the condition $k_1 \gg k_2[H_2]?$ (8%)