請勿在本誠噱觝上作答，否則不予計分

說明：答案一律窵在答案卷上；請依序作答，並標明題號。

$\left(\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}, \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}_{\mathrm{K}}, \mathrm{K}_{\mathrm{a}}\left(\mathrm{NH}_{4}{ }^{+}\right): 5.6 \times 10^{-10}, \mathrm{~K}_{\mathrm{a}}\left(\mathrm{HNO}_{2}\right): 4.0 \times 10^{-4}\right.$ ，

$$
\left.\mathrm{K}_{\mathrm{a} 1}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right): 4.3 \times 10^{-7}, \mathrm{~K}_{\mathrm{a} 2}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right): 4.8 \times 10^{-11}\right)
$$

一，選擇題：（單選，每題 3 分，不倒扣，共 75 分）

1．What＇s the hybridization of the central atom in FNO ？
（A）$s p$
（B）$s p^{2}$
（C）$s p^{3}$
（D）$d s p^{3}$
（E）$d^{2} s p^{3}$

2．What＇s the molecular shape for SeOF_{2} ？
（A）trigonal pyramidal（B）seesaw（C）trigonal bipyramidal（D）tetrahedral（E）bent
3．Which of the following species $\left(\mathrm{NO}^{+}, \mathrm{NO}^{-}, \mathrm{NO}, \mathrm{NO}^{2-}, \mathrm{NO}^{3}\right)$ has the largest and smallest bond energy for $\mathrm{N}-\mathrm{O}$ bond，respectively？（Assume that the orbital energy order is the same as that for N_{2} ．）
（A） $\mathrm{NO}^{+}, \mathrm{NO}^{-}$
（B） $\mathrm{NO}, \mathrm{NO}^{3-}$
（C） $\mathrm{NO}, \mathrm{NO}^{-}$
（D） $\mathrm{NO}^{+}, \mathrm{NO}^{3-}$
（E） $\mathrm{NO}^{\circ}, \mathrm{NO}^{3-}$

4．To make a buffered solution with pH 10.0 ，the ratio of $\mathrm{NH}_{4} \mathrm{Cl}$ to NH_{3} must be
（A） $1.8: 1$
（B） $1: 1.8$
（C） $0.18: 1$
（D） $1: 0.18$（E）none of above

5．The molecular orbital electron configuration $\left.\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s}\right)^{*}\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}\right)^{2}\right)^{2}\left(\pi_{2 p}\right)^{4}\left(\sigma_{2 p}\right)^{1}$ applies to which of the following species？
（A） $\mathrm{N}_{2}{ }^{-}$（B） $\mathrm{C}_{2}{ }^{-}$
（C） BC
（D）BN
（E）CO

6．Which of the following are paramagnetic：（a） $\mathrm{CN},(\mathrm{b}) \mathrm{NO}^{-},(\mathrm{c}) \mathrm{O}_{2}{ }^{-}$，（d） BN ？
（A）a，b，c
（B）b，c
（C）a，b，d
（D）a，b
（E）a，b，c，d

7．Given that $\quad \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(\mathrm{aq}) \quad\left(\mathrm{K}_{\mathrm{eq}}=1.72 \times 10^{7}\right)$ calculate $[\mathrm{Cl}]_{\text {eq }}$ when the solid $\mathrm{AgCl}\left(\mathrm{K}_{\text {sp }}=1.6 \times 10^{-10}\right)$ is put in a $10.0 \mathrm{M} \mathrm{NH}_{3}$ solution．
（A） 0.39 M
（B） 0.14 M
（C） 0.47 M
（D） 0.28 M
（E） 0.52 M

8．Rank the following 0.10 M solutions in order from most acidic to most basic：
（1） CaBr_{2} ，（2） KNO_{2} ，（3） $\mathrm{NH}_{4} \mathrm{ClO}_{4}$ ，（4） $\mathrm{NH}_{4} \mathrm{NO}_{2}$ ，（5） HNO_{2}
（A） $5,3,1,2,4$
（B） $3,5,2,4,1$
（C） $5,3,4,2,1$
（D） $5,3,4,1,2$
（E） $5,4,1,3,2$

9．Consider the titration of 25.0 mL of a 0.1 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with 0.1 M HCl ．
What＇s the pH of the solution after adding 12.5 mL HCl ？
（A） 8.9
（B） 9.3
（C） 9.8
（D） 10.1
（E） 10.3

10．If $\mathrm{K}_{\mathrm{w}}\left(0^{\circ} \mathrm{C}\right)=1.14 \times 10^{-15}$ and $\mathrm{K}_{\mathrm{w}}\left(40^{\circ} \mathrm{C}\right)=2.92 \times 10^{-14}$ ．Calculate $\Delta \mathrm{S}^{\circ}$（in $\left.\mathrm{J} / \mathrm{K}, \mathrm{mol}\right)$ for the autoionization of water： $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
（A）-30.6
（B）－52．8
（C）-75.1
（D）-84.2
（E）－104．3

11．Calculate $\Delta \mathrm{H}$（in kJ／mol）in Problem 10.
（A） 57.6
（B） 29.5
（C） 48.3
（D） 25.9
（E） 33.8

12．Given that $\mathrm{C}_{\mathrm{p}}=37.27 \mathrm{~J} / \mathrm{K}, \mathrm{mol}$ and $\mathrm{S}^{\circ}=213.64 \mathrm{~J} / \mathrm{K}, \mathrm{mol}$ for CO_{2} at $25^{\circ} \mathrm{C}$ and 1.0 atm ， Calculate the molar entropy（in J／K，mol）at 350 K and 2.0 atm ．
（A） 213.9
（B） 218.3
（C） 215.3
（D） 208.5
（E）210．6

13． 3.0 mole of ideal gas（ $\overline{\mathrm{C}}_{\mathrm{v}}=3 \mathrm{R} / 2$ ）at $25^{\circ} \mathrm{C}$ expands reversibly and adiabatically from 10.0 atm to 1.0 atm ．Calculate the work（in kJ ）．

系所組別：生科，地科，化工，材料，環工系
考試科目：普通化學
考試日期：0710，節灭： 1

（A）－6．7
（B）-2.2
（C）-8.5
（D）－12．4
（E）－10．8

14．What＇s the final temperature（in K）in Problem 13 ？
（A） 180.3
（B） 196.2
（C） 126.5
（D） 232.8
（E） 118.6

15．How many reactions listed below at constant pressure are predicted to have greater ΔH than ΔE ？
（a） $2 \mathrm{HF}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$
（b） $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
g）$\rightarrow 2 \mathrm{HH}_{3}(\mathrm{~g})$
（c） $4 \mathrm{HH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
（d） $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$
（A） 0
（B） 1
（C） 2
（D） 3
（E） 4

16．A certain reaction has the following general form：$a \mathrm{~A} \rightarrow \mathrm{bB}$
At a particular temperature and $[\mathrm{A}]_{0}=2.80 \times 10^{-3} \mathrm{M}$ ，a plot of $1 /[\mathrm{A}]$ vs．time resulted in a straight line with a slope of $3.60 \times 10^{-2} \mathrm{~L} / \mathrm{mol}, \mathrm{s}$ ．What＇s the＂third＂half－life（in s）？
（A） 1.98×10^{4}
（B） 3.96×10^{4}
（C） 4.35×10^{3}
（D） 2.25×10^{4}
（E） 7.92×10^{4}

17．In 6 MHCl ，the decomposition of the complex ion $\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}$ is first order with a half－life of 14 h at $25^{\circ} \mathrm{C}$ ．How long（in hours）will it take for the $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}\right]$ to decrease to 53.0% of its initial value？
（A） 15
（B） 5.6
（C） 6.6
（D） 7.4
（E） 13

18．The reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$ has the following proposed mechanism：
Step 1：$\quad A+B \rightleftharpoons D \quad$（rate constant：$k_{1}$ and k_{1} ，fast equilibrium）
Step 2：$\quad \mathrm{D}+\mathrm{B} \rightarrow \mathrm{E} \quad$（rate constant： k_{2} ）
Step 3：$\quad \mathrm{E}+\mathrm{A} \rightarrow \mathrm{C}+\mathrm{B} \quad$（rate constant： k_{3} ）
If step 2 is the rate－determining step，what should be the rate of formation of C ？
（A）$k[A]$
（B）$k[A]^{2}[B]$
（C）$k[A][B]^{2}$
（D）$k[A][B]$
（E）$k[A]^{2}[B]^{2}$

19．Calculate the equilibrium constant at $25^{\circ} \mathrm{C}$ for $\mathrm{AgCl}(\mathrm{s}) \rightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})$ given that $\mathrm{E}^{\circ}=0.22 \mathrm{~V}$ for $\mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{(}(\mathrm{aq})$ and $\mathrm{E}^{0}=0.80 \mathrm{~V}$ for $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$ ．
（A） 1.2×10^{-10}
（B） 1.6×10^{-10}
（C） 2.4×10^{-9}
（D） 7.2×10^{-9}
（E） 1.2×10^{-9}

20．Calculate the potential for the following cell at $25^{\circ} \mathrm{C}$
$\mathrm{Pt} 1 \mathrm{H}_{2}(\mathrm{~g})(0.79 \mathrm{~atm}) 1 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})(0.50 \mathrm{M}) \mathrm{ll} \mathrm{Cl}(\mathrm{aq})(0.05 \mathrm{M}) 1 \mathrm{Cl}_{2}(\mathrm{~g})(0.10 \mathrm{~atm}) 1 \mathrm{Pt}$ given that $\mathrm{E}^{\circ}=1.3595 \mathrm{~V}$ for $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$ ．
（A） 1.26 V
（B） 1.42 V
（C） 0.96 V
（D） 1.58 V
（E） 1.06 V

21．What＇s the systematic name of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CHOHCH}_{3}$ ？
（A）1－Methyl－4－hydroxypentane
（B）2－Methyl－4－hydroxypentane
（C）1，1－Dimethyl－3－hydroxybutane（D）2－Methyl－4－pentanol（E）4－Methyl－2－pentanol

22．Which of the following compounds doesn＇t react with the acidic KMnO_{4} solution？
（A）propanol
（B）isopropanol
（C）2－methyl－1－propanol
（D）2－methyl－2－propanol
（E）glycerol

23．How many unpaired electrons are there for the tetrahedral complex $\left[\mathrm{CoCl}_{4}\right]^{]^{--}}$？
（A） 0
（B） 1
（C） 2
（D） 3
（E） 4

24．Which of the following orders is correct for the ligands in the spectrochemical series？
（A） $\mathrm{CN}^{-}>\mathrm{OH}^{-}>\mathrm{NH}_{3}>\mathrm{F}^{-}>\mathrm{I}^{-}$
（B） $\mathrm{CN}^{-}>\mathrm{NH}_{3}>\mathrm{OH}^{-}>\mathrm{F}^{-}>\mathrm{I}$
（C） $\mathrm{CN}^{-}>\mathrm{NH}_{3}>\mathrm{OH}^{-}>\mathrm{I}^{-}>\mathrm{F}^{-}$
（D） $\mathrm{OH}^{-}>\mathrm{CN}^{-}>\mathrm{NH}_{3}>\mathrm{I}>\mathrm{F}^{-}$
（E）none of above

25．Consider the synthesis of NH_{3} from N_{2} and H_{2} ，an exothermic reaction．The reaction begins with a $3: 1$ mixture of H_{2} and N_{2} with temperature $400,500,600^{\circ} \mathrm{C}$ ，and total pressure 300,400 ， 500 atm ，respectively．Which experimental condition will give the highest yield of NH_{3} at equilibrium？
（A） $600^{\circ} \mathrm{C}, 500 \mathrm{~atm}$
（B） $600^{\circ} \mathrm{C}, 300 \mathrm{~atm}$
（C） $400^{\circ} \mathrm{C}, 500 \mathrm{~atm}$
（D） $400^{\circ} \mathrm{C}, 300 \mathrm{~atm}$
（E） $500^{\circ} \mathrm{C}, 400 \mathrm{~atm}$

二，非選擇題：（共 25 分，計算題務必列出計算過程，只寫答案不咭分）

1．The wave function of 2 s orbital for hydrogen atom may be represented as $\mathrm{A}\left[2-\left(\mathrm{r} / \mathrm{a}_{0}\right)\right] \exp \left(-\mathrm{r} /\left(2 \mathrm{a}_{0}\right)\right)$ ， where A and a_{0} are constants，r is the distance between electron and nucleus，and exp represents an exponential function with a base of e ．
（a）What＇s the probability of finding the electron at $r=3 a_{0}$ relative to that at $r=a_{0}$ ？
（b）Plot the radial probability distribution function，and calculate the location of local maximum．（9\％）
2．The rotational transition of ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ from $\mathrm{J}=0$ to $\mathrm{J}=1$ requires electromagnetic radiation with a wavelength of $4.85 \times 10^{-4} \mathrm{~m}$ ．The masses of ${ }^{1} \mathrm{H}$ and ${ }^{35} \mathrm{Cl}$ are 1.0078 and 34.9689 amu ，respectively． The energy level is $\mathrm{E}_{\mathrm{J}}=\mathrm{h}^{2} \mathrm{~J}(\mathrm{~J}+1) /\left(8 \pi^{2} \mathrm{I}\right)$ ，where I is the moment of inertia．Calculate I （in kg m ） and the bond length（in pm）of this molecule？（8\％）

3．The reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is believed to take place by the following mechanism：
（1） $\mathrm{NO}+\mathrm{NO} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2} \quad$（rate constant： k_{1} and k_{-1} ）
（2） $\mathrm{H}_{2}+\mathrm{N}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$（rate constant k_{2} ）
（a）Calculate the concentration of $\mathrm{N}_{2} \mathrm{O}_{2}$ at steady state？
（b）Calculate $-\mathrm{d}[\mathrm{NO}] / \mathrm{dt}$ under the condition $\mathrm{k}_{1} \gg \mathrm{k}_{2}\left[\mathrm{H}_{2}\right]$ ？

