※ 考生請注意：本試題 \square 可 ∇ 不可 使用計算機

1．Compute the following limits，if exist ：
a） $\lim _{x \rightarrow 0} \frac{\sin x}{x-[x]}$ ，where $[x]$ is the Gauss function，
b） $\lim _{x \rightarrow 1} \frac{\int_{1}^{\sqrt{x}} e^{-t^{2}} d t}{\ln x}$ ．
2．Find the local extrema of $f(x)=x^{2} \ln x$ for $x>0$ ， discuss concavity and find the point of inflection．

3．Calculate the following integrals ：
a） $\int_{2}^{4} \frac{d x}{x \ln \sqrt{x}}$
b） $\int_{0}^{1} x \cdot \arctan x^{2} d x$

4．Find the area of the surface generated by revolving the curve $6 x y=x^{4}+3$ from $x=1$ to $x=3$ about the x－axis．

5．Use $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}$ ，prove $\sum_{n=1}^{\infty} \frac{n^{2} x^{n}}{n!}=\left(x^{2}+x\right) e^{x}$ ， and find the sum $\sum_{n=1}^{\infty} \frac{n^{3}}{n!}$ ．

6．Find the average value of $f(x, y)=x y$ over the quarter circle $x^{2}+y^{2} \leq 1$ in the first quadrant．

7．Evaluate $F(x, y)=\int_{0}^{\infty} \frac{e^{-x t}-e^{-y t}}{t} d t$ for $x>0, y>0$ ．
8．Find the points on the curve $17 x^{2}+12 x y+8 y^{2}=100$ that are closest to and farthest away from the origin．

