編號: 22	國立成功大學一〇	○學年度轉學生招生考試	試題	
系所組別: 全校 考試利日: 御積谷				
今四件日·版價刀 ※ 孝生諸注音·★			考試[3期:0710、節次:3
▲ うエ明/エ感・4		异化效		
1. Compute t	he following limits,	if exist :	(各 7%)
a) $\lim_{x\to 0} \frac{\sin}{x-1}$	$\frac{x}{x}$, where [x] is the 0	Gauss function,	• .	
b) $\lim_{x \to 1} \frac{\int_{1}^{x}}{}$	$e^{-t^2} dt$ in x			
2. Find the lo	ocal extrema of f(x) =	$x^2 \ln x$ for $x > 0$,		
discuss co	ncavity and find the	point of inflection.		(12%)
3. Calculate	the following integra	ls :	(*	各 7%)
a) $\int_{z}^{4} \frac{dx}{x \ln \sqrt{x}}$	t	b) $\int_0^1 \mathbf{x} \cdot \operatorname{arc} \tan x^2 dx$		
4. Find the a	rea of the surface gen	erated by revolvin	g the curve	÷
$6xy = x^4 + 3$	3 from $\mathbf{x} = 1$ to $\mathbf{x} = 3$	about the x-axis.		(12%)
5. Use $\sum_{n=0}^{\infty}$	$\frac{\mathbf{x}^n}{n!} = \mathbf{e}^{\mathbf{x}}$, prove $\sum_{n=1}^{\infty}$	$\frac{n^2 x^n}{n!} = (x^2 + x)e^x ,$		
and find th	he sum $\sum_{n=1}^{\infty} \frac{n^a}{n!}$.			(12%)
6 Find the a	verage value of f(x y	= xy over the gua	rter circle	
$x^2 + y^2 \le 1$	in the first quadrant	, ny over me qua		(12%)
7. Evaluate	$F(\mathbf{x},\mathbf{y}) = \int_0^\infty \frac{e^{-\mathbf{x}t} - e^{-\mathbf{y}t}}{t} dt$	for x > 0, y > 0.		(12%)
8. Find the p	oints on the curve 17	$7x^2 + 12xy + 8y^2 = 10$	0 that are	(170/)
closest to	and farmest away fro		•	(12/0)
			,	