1．Define $f(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
a）Find $f^{\prime}(0)$
（6\％）
b）Is $f^{\prime}(x)$ continuous at $x=0$ ？

2．Evaluate $\int_{0}^{1} x^{2} \cdot \ln \left(x^{3}+1\right) d x$

3．Show that $\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}=\sum_{n=0}^{\infty} \frac{2^{2 n}(n!)^{2}}{(2 n+1)!} x^{2 n+1}, \forall x:|x|<1$

4．The cardioid $r=2(1+\cos \theta)$ is rotated about the polar axis $y=0$ ． Find the area of the surface generated．

5．Evaluate $\int_{0}^{8} \int_{\sqrt[3]{x}}^{2} \frac{1}{y^{4}+1} d y d x$

6．Convert $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}}\left(x^{2}+y^{2}\right) d y d x$ to polar coordinates and evaluate．（10\％）

7．Find $\frac{\partial w}{\partial x}$ at the point $(x, y, z)=(2,-1,1)$ if $w=x^{2}+y^{2}+z^{2}$ and $z^{3}-x y+y z+y^{3}=1$

8．Two sides of a triangle are 10^{cm} and 15^{cm} ，and are increasing at $3 \mathrm{~cm} / \mathrm{sec}$ and $4 \mathrm{~cm} / \mathrm{sec}$ ， respectively，which the included angle is $\pi / 3$ and decreasing at $0.5 \mathrm{rad} / \mathrm{sec}$ ．Is the third side increasing or decreasing ？at what rate ？

9．Suppose the utility of purchases of x, y, z units of three different kinds of product is given by $u=5 x^{\frac{1}{3}} y^{\frac{2}{3}} Z^{\frac{1}{2}}$ ，where the price per unit of the products is $\$ 2, \$ 5$ ，and $\$ 1$ ，respectively．If a consumer has $\$ 90$ to spend，how many units of each product should be purchased to achieve maximum utility ？

