- 一. 答案依題目順序寫於答案卷上
- 二. 計算題務必列出相關公式和計算過程,只寫答案 不計分
- 三. 選擇題答錯者倒扣題分的四分之一
- 四. 可使用無儲存功能的計算機 五. R = 8.32 J/K·mol
- -. Write down the English names for the following compounds: (10%)
 - (a) C_4H_{10} (b) $[C_0(NH_3)_5Cl] Cl_2$
 - (c) Mn(OH)₂ (d) (NH₄)₂SO₄ (e) NaHCO₃
- —. Gas diffusion plays an important role in the enrichment of uranium for use in nuclear reactor. Natural uranium is mostly
 - $^{238}_{92}$ U, which can not be fissioned to produce energy. It contains only about 0.70% of the fissionable nuclide $^{235}_{92}$ U. In the gas diffusion enrichment process, the natural uranium reacts with fluorine to form a mixture of 238 UF₆ and 235 UF₆. Then, UF₆

by semiporous walls. Calculate the number of chambers required to enrich from 0.70% ²³⁵ U to 0.72% ²³⁵ U. (Mw for ²³⁸ UF₆ =

molecules are allowed to pass into a series of chambers separated

352.05 g/mol, Mw for 235 UF₆ = 349.03 g/mol) (10%)

- E. Describe all the atomic orbitals and hybrid orbitals in the chemical bonding of ethylene molecule. (5%)
- 四. The structure of copper is characterized by a face-centered cubic unit cell. Draw the unit cell. (5%)

(背面仍有題目,請繼續作答)

五.
$$Cl_{2(g)}$$
 k_{-1} $2Cl_{(g)}$ both fast with equal rates $Cl_{(g)} + CHCl_{3(g)}$ k_{-1} k_{-1}

六. (a) Complete the following equation. (5%)

$$\bigcirc + HNO_3 \xrightarrow{H_2SO_4}$$

- (b) Draw the structure of 4-bromopentanoic acid. (5%)
- t. (a) Predict a structure of BeF₂ in the gas phase. (5%)
 (b) What structure would you predict for BeF_{2 (s)}. (5%)
- ↑. The Lewis structure of carbon dioxide is given to be $\ddot{O}=C=\ddot{O}$, but not $\dot{C}\equiv O-\ddot{O}$; $\ddot{C}=O=\ddot{O}$ and $\ddot{C}-O\equiv O$. Why? (hint: formal charge) (10%)
- 九. What is the PH after a 25 ml, 0.2 M solution of H_3PO_4 is titrated with 50 ml, 0.1 M NaOH solution? ($Ka_1=7.5x_10^{-3}$, $Ka_2=6.2x_10^{-8}$, $Ka_3=4.8x_10^{-13}$)(10%)
 (a) 2.4 (b) 3.8 (c) 4.7 (d) 5.2 (e) 6.2
- +. At a constant pressure of 1.00 atm, 99 kJ of energy is released as heat when 1.00 mol of SO_{2(g)} reacts completely with 0.50 mol O_{2(g)} to form 1.00 mol of SO_{3(g)} at 25°C. What is the ΔE for this oxidation process? (10%)
 - (a) 41.8 (b) 97.6 (c) 117.3 (d) 139.4 (e) 150.0 kJ

+-. $CO_{(g)} + 2H_{2(g)} \rightarrow CH_3OH_{(l)}$

It is known that the change of free energy (ΔG) at 25°C for the above reaction is -38 kJ/mol, in which $CO_{(g)}$ is at 5.0 atm and $H_{2(g)}$ at 3.0 atm. What is the equilibrium constant for this reaction? (10%)

(a) 9.9×10^4 (b) 1.2×10^5 (c) 2.7×10^5 (d) 4.2×10^5 (e) 5.1×10^5