臺灣綜合大學系統

107 學年度 學士班轉學生聯合招生考試

試

題

類組:A07/C11

科目名稱:線性代數

科目代碼:A0702

臺灣綜合大學系統 107 學年度學士班轉學生聯合招生考試試題

科目名稱	線性代數	類組代碼	A07 · C11
		科目碼	A0702
※本項考試依簡章規定各考科均「不可以」使用計算機		本科試題共計 1 頁	

1. Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & -1 & -1 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$
 and $T(\mathbf{x}) = A\mathbf{x}$ for $\mathbf{x} \in \mathbf{R}^4$. Find bases for $\ker(T)$ and $\operatorname{im}(T)$. (15%)

2. Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
.

(a) Find an invertible matrix P such that $P^{-1}AP$ is diagonal. (15%)

(b) Find
$$A^5 - A^4 + 2A^3 - 3A^2 + 2A + I$$
. (10%)

- 3. If A is an $n \times n$ matrix such that $A^2 = A$. Let $\mathbf{U} = \{\mathbf{v} \in \mathbf{R}^n | A\mathbf{v} = \mathbf{v}\}$ and $\mathbf{W} = \ker(A)$. Show that $\mathbf{R}^n = \mathbf{U} \oplus \mathbf{W}$. (15%)
 - 4. Let $B_2 = \{(1,0), (1,1)\}$ and $B_3 = \{(1,1,1), (1,0,1), (0,0,1)\}$ be ordered bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively. If T(x,y) = (x-y,x+2y,2x+y), find the matrix representation of T with respect to B_2 and B_3 . (15%)
 - 5. Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a subset of an *n*-dimensional vector space \mathbf{V} . Does S spans \mathbf{V} imply that S is linearly independent? Why? (15%)
 - 6. Let V be the space of all polynomials of degree at most 3. Define the inner product on V by $\langle p, q \rangle = \int_0^1 p(x) \, q(x) \, dx$ for $p, q \in V$. Let S be the subspace of V spanned by $\{1, x\}$. If $\mathbf{v} = x^2$, find a vector $\mathbf{u} \in S$ and a vector $\mathbf{w} \in S^{\perp}$ such that $\mathbf{v} = \mathbf{u} + \mathbf{w}$. (15%)